The bipartite edge frustration of composite graphs
نویسندگان
چکیده
The smallest number of edges that have to be deleted from a graph to obtain a bipartite spanning subgraph is called the bipartite edge frustration of G and denoted by φ(G). In this paper we determine the bipartite edge frustration of some classes of composite graphs. © 2010 Elsevier B.V. All rights reserved.
منابع مشابه
The bipartite edge frustration of hierarchical product of graphs
The smallest number of edges that have to be deleted from a graph G to obtain a bipartite spanning subgraph is called the bipartite edge frustration of G and denoted by φ(G). In this paper our recent results on computing this quantity for hierarchical product of graphs are reported. We also present a fast algorithm for computing edge frustration index of (3, 6)−fullerene graphs.
متن کاملNew Expansion for Certain Isomers of Various Classes of Fullerenes
This paper is dedicated to propose an algorithm in order to generate the certain isomers of some well-known fullerene bases. Furthermore, we enlist the bipartite edge frustration correlated with some of symmetrically distinct innite families of fullerenes generated by the oered process.
متن کاملOn Edge-Decomposition of Cubic Graphs into Copies of the Double-Star with Four Edges
A tree containing exactly two non-pendant vertices is called a double-star. Let $k_1$ and $k_2$ be two positive integers. The double-star with degree sequence $(k_1+1, k_2+1, 1, ldots, 1)$ is denoted by $S_{k_1, k_2}$. It is known that a cubic graph has an $S_{1,1}$-decomposition if and only if it contains a perfect matching. In this paper, we study the $S_{1,2}$-decomposit...
متن کاملOn the bipartite vertex frustration of graphs
The bipartite vertex (resp. edge) frustration of a graph G, denoted by ψ(G) (resp. φ(G)), is the smallest number of vertices (resp. edges) that have to be deleted from G to obtain a bipartite subgraph of G. A sharp lower bound of the bipartite vertex frustration of the line graph L(G) of every graph G is given. In addition, the exact value of ψ(L(G)) is calculated when G is a forest.
متن کاملMaximum Frustration in Bipartite Signed Graphs
A signed graph is a graph where each edge is labeled as either positive or negative. A circle is positive if the product of edge labels is positive. The frustration index is the least number of edges that need to be removed so that every remaining circle is positive. The maximum frustration of a graph is the maximum frustration index over all possible sign labellings. We prove two results about...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 158 شماره
صفحات -
تاریخ انتشار 2010